Our Impact

Soft bed halts cancer progression
Published on 13th Jan 2023
The problem
All of us have a preference for stiff or soft beds, and cancer cells do too! When grown in stiffer extracellular matrix bed, cancer progresses faster. What happens if the matrix bed becomes softer? Unfortunately, there is no existing technology that can provide matrix softening.
Our solution
We developed a magnetic hydrogel which stiffens in close proximity with a magnet and softens when magnet is moved away. Using this, we found that softening of extracellular matrix bed reverses malignant characteristics of cancer and enhances drug response.
The impact
The magneto-softening technology can be used as a drug screening platform to study the therapeutic effects of matrix softening drugs and enzymes. More broadly, it can be used to further the study of matrix softening which has been neglected by the research community despite the knowledge that cells actively remodel their extracellular environment.
Our paper
Shou et al. Dynamic magneto-softening of 3D hydrogel reverses malignant transformation of cancer cells and enhances drug efficacy (link). ACS Nano (2023).
Mechano-stimulation boost stem cell manufacturing
Published on 2nd Jan 2023
The problem
Mesenchymal stem cells have huge therapeutic potential, but manufacturing them using 2D cell culture plate or 2.5D microcarriers reduce stemness and lack mechanical preconditioning.
Our solution
We coupled magneto-mechanical stimulation in our hydrogel platform to boost stem cell growth, secretions of therapeutic factors and direct cell differentiation including osteochondral interface as shown in the image below. The hydrogel is made with research-grade, biocompatible ingredients with clinical-grade equivalent.
The impact
The magnetic hydrogel platform which can be used for direct stem cell manufacturing to therapy, especially for applications requiring fewer but high quality cells, is a paradigm shift from existing protocols.
Our paper
Shou et al. Mechano-responsive hydrogel for direct stem cell manufacturing to therapy (link). Bioactive Materials (2023).

Impact as of Dec 2022

12 papers
-
75% with IF > 15

20 members

Research grant
-
> $3 million

24 awards